Cloth Fall Control to Prevent Start-up Marks in Weaving

A.T.M.S. Islam and M.P.U. Bandara

Narrovex Wentworth Textiles Inc., Stoney Creek, Ontario, Canada L8E 2W1

School of Textile Industries, University of Leeds, Leeds, England

2. BACKGROUND

The effect of cloth fall position during a loom stoppage is a primary cause of start-up marks in weaving. This effect is more pronounced in the case of 1-pick shedding looms. The loom stoppage is a result of the cloth fall hitting a mark on the back of the loom, which may be due to a number of factors such as the movement of the cloth fall under steady conditions, the effect of pick shedding, the movement of the shed under steady conditions, and the movement of the cloth fall under steady conditions. The cloth fall position affects the cloth fall position during a loom stoppage. The cloth fall position affects the fabric quality, the fabric appearance, and the fabric performance. The cloth fall position affects the fabric quality, the fabric appearance, and the fabric performance. The cloth fall position affects the fabric quality, the fabric appearance, and the fabric performance. The cloth fall position affects the fabric quality, the fabric appearance, and the fabric performance. The cloth fall position affects the fabric quality, the fabric appearance, and the fabric performance.

3. RESEARCH OBJECTIVES

The work reported in this paper was mainly intended for studying the effect of cloth fall position on the fabric quality and the fabric performance. The work reported in this paper was mainly intended for studying the effect of cloth fall position on the fabric quality and the fabric performance. The work reported in this paper was mainly intended for studying the effect of cloth fall position on the fabric quality and the fabric performance. The work reported in this paper was mainly intended for studying the effect of cloth fall position on the fabric quality and the fabric performance. The work reported in this paper was mainly intended for studying the effect of cloth fall position on the fabric quality and the fabric performance.

4. CONCLUSIONS

The results of the experiments conducted in this study indicate that the cloth fall position significantly affects the fabric quality and the fabric performance. The results of the experiments conducted in this study indicate that the cloth fall position significantly affects the fabric quality and the fabric performance. The results of the experiments conducted in this study indicate that the cloth fall position significantly affects the fabric quality and the fabric performance. The results of the experiments conducted in this study indicate that the cloth fall position significantly affects the fabric quality and the fabric performance. The results of the experiments conducted in this study indicate that the cloth fall position significantly affects the fabric quality and the fabric performance.

5. ACKNOWLEDGMENTS

The authors wish to thank the management of Narrovex Wentworth Textiles Inc. for their support and encouragement during the conduct of this study. The authors wish to thank the management of Narrovex Wentworth Textiles Inc. for their support and encouragement during the conduct of this study. The authors wish to thank the management of Narrovex Wentworth Textiles Inc. for their support and encouragement during the conduct of this study. The authors wish to thank the management of Narrovex Wentworth Textiles Inc. for their support and encouragement during the conduct of this study. The authors wish to thank the management of Narrovex Wentworth Textiles Inc. for their support and encouragement during the conduct of this study.
spacing at the fell is usually greater than that in the fabric, due to the slipping back of one or more of the picks that were last inserted, as shown in Fig. 1. Further, the movement of the reed up to its front centre position during beat-up makes it impractical to locate any measuring device directly above or below the cloth fall. The reed itself could not be used as a sensor of cloth fall position, due to the slipping back of picks. Any information obtained by the reed with the fell would only be available too close in time to beat-up to be of use in readjusting cloth fall position (Sternheim, 1989).

![Cloth fall and its relationship to reed front centre position](image)

Optical sensors, which are currently available in a variety of forms, seem to be the most promising for this purpose. Their main advantage is the non-contacting nature of the measurement.

4. EXPERIMENTAL APPARATUS AND PROCEDURES

A Saurer 60B narrow fabric loom was used to weave viscose filament yarns (167 dtex, 42 filaments, warp: 320 tpm, weft: 80 tpm), which are highly susceptible to start-up marks. The loom was modified to have stepper motor driven take-up and let-off, and a spring loaded back rail arrangement. A PC was used to control warp tension and enable fine adjustments to the cloth fall position. The absence of temples on the loom was an advantage, as the stepper motors could be used to adjust cloth fall position without interference. Fig. 2 shows a schematic diagram of the main components of the experimental loom.

A plain fabric with 34 ends/cm and 24 picks/cm was woven at 310 picks/min, under a warp tension of 2–2.5 cN/tex. The normal pick spacing was calculated as the average value of that obtained by measuring ten fault-free samples of fabric. Each sample was measured for pick spacing over seven consecutive picks. At a start-up mark, pick spacing over three picks including the last pick before stoppage and five picks after it were measured. This was repeated over five positions across the fault, in the fabric width direction, and the results averaged (Islam and Bandara, 1996c).

Initially, to observe cloth fall drift during loom stoppages, an optical microscope and a small video camera was tried out. This equipment had to be removed each time the loom was restarted, as the reed movement did not allow them to remain mounted vertically above the cloth fall.

A laser analogue displacement sensor was then considered, due to its comparatively small physical dimensions. This device, shown in Fig. 3(a), uses a fine laser beam to monitor the position of a target by detecting a spot of light falling on it. With a suitable amplifier, the device enables movements of the target position to be determined to an accuracy of 1 μm (Anon., c. 1992). The working distance, which is the separation between the target and the front edge of the detector is, 20 ± 2 mm, and this allowed the sensor to be located a safe distance away from the reed. Within this range, the output signal of the sensor varies linearly with distance.

![Instrumentation and experimental loom control system](image)

Fig. 2 Instrumentation and experimental loom control system

![Schematic of laser displacement sensor](image)

Fig. 3 The laser sensor: (a) physical configuration, and (b) placement on loom
This device could be mounted horizontally, provided that a suitable target could be placed on the fabric very near the fell, that could be detected by the laser beam. Accordingly, a small lightweight target plate was made that could be placed very close to the cloth fell in such a way that it stayed stable during the loom stoppage period. As such, the movement of the target would be very nearly the same as that of the fell. The target had to be placed with precision on the fabric as soon as the loom stopped, and be removed immediately before the loom was restarted. The shape of the target made tilting of it unlikely after placement and its base was provided with two fine needle points at the edge close to the cloth fell, to prevent it rotating or slipping on the fabric (Fig. 3(b)).

Since the sensor had a working range of 20 ± 2 mm from the target, a guide on the sensor mounting plate was used to lower the target plate accurately onto the fabric. The output of the sensor is a current signal, which can be easily converted into a voltage and amplified with a stable DC amplifier to enable detection of any movement of the target. A safeguard was provided that prevented the loom from being restarted without the target first being removed.

Since measurement periods ranging from several seconds to several minutes were used, it was found convenient to record the measurements on a digital storage oscilloscope. The oscilloscope traces displayed a high degree of stability after a brief warming-up period. It was first necessary to check that the sensor and amplifier combination gave a stable output when the target was held without any movement over a period of several minutes. The results of this test confirmed that the required stability was present (Islam, 1996d).

5. EXPERIMENTAL RESULTS

5.1 Loom Start-up Speed

The reed should reach normal beat-up speed at the first beat-up in order to eliminate the effect of reed speed on start-up marks. On the narrow fabric loom used, it was found that this would, in fact, be possible by starting the sley close to the 90° degree position so that a sufficiently long part of a loom cycle was available for the sley to gain speed. Fig. 4 shows how the looms speed at beat-up varies with the starting position of the sley over the first four cycles following a loom start-up. Each point on the graph was obtained by averaging five measurements.

![Fig. 4 Machine start-up behaviour at different starting angles](image)

5.2 Weaving Without Cloth Fell Correction

In the weaving trials, to produce start-up marks the loom was allowed to weave for several minutes and was stopped for 300 s at closed shed, i.e. at 315°, to reduce warp tension and hence minimise the drift of the cloth fell. Start-up from different shaft positions (i.e. 90°, 180°, 270° and 315°) was tried. The variation of pick spacing over the first five picks, as well as three picks inserted before the stoppage, is shown in Fig. 5. Each point was obtained using five repeat readings.

![Fig. 5 Influence of loom starting position on pick spacing variation](image)

At all starting positions except 90°, a greater than normal pick spacing was obtained just after the first beat-up. However, when the loom was started from the 90° position, a thick place was seen in the fabric, which indicated that the cloth fell had drifted towards the back of the loom, and with the normal beat-up speed obtained when starting from this position the slightly increased cloth fell displacement lead to the thick place.

5.3 Cloth Fell Correction

The creep of the cloth fell is dependent on the nature and duration of the loom stoppage and other factors. Hence the amount of cloth fell correction required before start-up varies, depending on the loom stoppage duration. Since the sensor enables this amount to be determined, it was possible to move the cloth fell back to where it would have been before the loom stopped. This was done by controlling the stepper motor on the take-up roller, as the number of steps of the motor rotation required could be determined from the required fell displacement. Following this, the let-off was adjusted to restore warp tension to its normal value.

5.4 Cloth Fell Creep Measurements

The cloth fell drift signal profiles produced by the laser sensor are shown in Fig. 6. Trials were carried out by weaving over a sufficiently long period and then stopping the loom. The output signal provided by the sensor shows the drift of the cloth fell that takes place during the loom stoppage. The rise of the trace indicates a corresponding movement of the
fell towards the back of the loom. While the trend was generally the same each time, there were differences in the actual magnitude of the drift depending on the nature and duration of stoppage. This method of fell drift measurement was also tried out on a Sulzer L5100 loom with a polyester–cotton warp, and Fig. 6(b) shows the drift observed.

Fig. 6 Fell displacement: (a) on a narrow loom with viscose lining fabric, and (b) on an air jet loom with polyester–cotton fabric

5.5 Effect of Cloth Fell Correction on Pick Spacing

With the spring-loaded back rail arrangement used on the experimental loom, it was found that the cloth fell shifted towards the back of the loom during a stoppage (Islam
Islam and Bandara

1996a, d; Islam and Bandara, 1996b, c). In these experiments, the crep of the cloth fell was measured to be approximately 50 μm for a stoppage time of 300 s. Under the control of the PC, the take-up stepper motor was moved three steps to compensate for this amount of fell drift in order to bring the cloth fell to its correct position. The let-off was also adjusted as necessary to restore the warp tension. Restarting the loom from the 90° position in this manner showed that the procedure was effective, as there was no visible start-up mark in the fabric.

5.6 SEM Micrographs

Fig. 7 gives examples of SEM micrographs of fabric produced at a start-up following a 300 s stoppage during which the loom was at the closed shed position. Fig. 7(a) shows the fabric obtained without cloth fell correction, and Fig. 7(b) the fabric woven after cloth fell correction. A distinct pick spacing variation is seen in the form of an open place in the fabric woven without the correction. When the loom was started after initiating the control functions described above, no visible fault appeared in the fabric.

6. CONCLUSIONS

The method of using a laser analogue displacement sensor was found to be effective in measuring cloth fell drift during a loom stoppage. Further, the correction of cloth fell position on the basis of such measurement enabled satisfactory elimination of start-up marks. The effectiveness of the method is due to the fact that the fell correction provided is in keeping with the actual drift that takes place during each stoppage, and is not carried out in an indirect way.

The method used for the measurement of cloth fell drift on the experimental loom is not likely to be suitable for use on a wide loom. An alternative optical method will be necessary, which directly senses the crep of the fell in a non-contact manner.

On a wide loom, interference from the fabric temples may not allow accurate adjustment of cloth fell position. However, if the procedure is aided by feedback from the fell drift sensor, it will be possible to make the correction more accurately.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. G.A.V. Leaf for comments during the course of this work, and the Association of Commonwealth Universities (ACU) in London for awarding the scholarship to A.T.M. Shafiul Islam that made this research possible.

REFERENCES

Dornier, P., 1992a. Loom Arrangement for Fabrics Sensitive to Stop Marks, USP 5 082 029.

Sulzer (Berktold, K.), 1994b. Loom Start-up – has a Control to Operate the Shed Movements and the Warp Let-off and Fabric Take off Units in Two Phases for Effective Resumption without Fabric Marking, EP 0 629 725.

Sulzer (Berktold, K.), 1994b. Loom Stoppage System – has a Control to Move the Shed into an Offset Position Together with the Loom Stop Action on a Fault Signal to Prevent Beating in the Faulty Weft, EP 0 629 726.

Part 1: Fibre Science and Textile Technology covers scientific and technical subjects, including fundamental theoretical or experimental investigations, developments in machinery, processes, testing or use of textiles, critical reviews of the literature, or research into the history of the subject.

Part 2: Textile Economics, Management and Marketing concentrates on business and economic aspects of the textile industry, including fashion marketing and management, retailing, and the economics and management of manufacturing processes.

Part 3: Annual Special Issue features a particular theme and includes specially invited discussion papers and reviews of recent advances. For 1999, the theme will be Textile Chemistry: Dyeing and Finishing.

The Textile Institute's mission is to promote professionalism and to provide a global network for the long-term development of industries associated with fibres and fabrics, clothing and footwear, interior and technical textiles. The Institute is the world's leading publisher of a wide range of books and periodicals covering the broad spectrum of the textile industries.